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Modeling systems with large aspect
ratios is a difficult and important issue

B Issue: Poisson solvers used in PIC codes often fail when grid
aspect ratio >> 1

B Relevance: Many important problems involve extreme aspect
ratios:
® Long beams in rf circular accelerators: length ~1m; radius ~1mm
® Flat beams (as at interaction point of lepton colliders)
® Beams in induction linacs: length~ 10s of meters; radius ~ cm
@ Galaxies

m Standard grid-based approaches use very large # of grid points
in the long dimension, leading to prohibitively long run times

B As aresult, it is extremely difficult or impossible to model high
aspect ratio systems accurately using standard grid-based
approaches, even on terascale computers
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A potential “brick wall” in the road to large-scale space-
charge simulations of beams in circular machines

B mid-to-late1990s : parallel high current linac modeling codes
e Example: IMPACT code

@ linac length ~km; ~1000s steps (Poisson solves); ellipsoidal bunches
m Early 2000s:

e Parallel weak-strong and strong-strong beam-beam simulations in colliders

® Major advances including first-ever million-particle, million-turn strong-strong
beam-beam simulation (J. Qiang)

m 2000+ : advance to modeling beams with space charge in circular machines
® Very long simulations: 1000’s to millions of turns
® More difficult Poisson problem if aspect ratio is large
® Keeping grid near-square would involve ~10-1000x more grid points

m (>1000s more steps) x (10-1000x more grid points) =
10% to >10° times more challenging than linac modeling

m Will not get this advance from hardware alone; also need
advances in algorithms
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Poisson Problem:
Observation

m The Green function, G, and source density, p, may change
over vastly different scales

® In simple geometries G is known apriori; p is not

We should use our full knowledge of G, as needed, to obtain
accurate, efficient, and robust solution of the Poisson problem

m Example: 2D Poisson equation in free space

B(x,y) = [ Gx-x',y - y)p(x',y")dx'dy

G(x=x',y =) = ~In((x = x') + (¥ - 3')?)
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Standard Approach
(Hockney and Eastwood)

(x,y) = [ G(x-x',y - y)p(x',y")dx'dy’
a

J
¢l,] = E Gi—i',j— j'piv’jv GO,O = GO,I

m approach makes use of only partial knowledge of G

H equivalent to trapezoidal rule to approximate the
convolution integral

m Cutoff at (x,y)=(0,0); isotropy issue for large aspect ratio

m error depends on how rapidly the integrand, pG, varies
over an elemental cell

® If p changes slowly we might try to use a large grid spacing; but this can
introduce huge errors due to the change in G over a cell length
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Cellular Analytic Convolution (CAC)

m Assume p varies in a prescribed way in each cell
m Use analytic Green function to perform the convolution
integral exactly in each cell, then sum over cells
m Example: Iinear basis functions to approximate p.
X hx
P(x;,y ;) = h—h pi’jfdx'fdy'(hx —x)(h, = y)G(x; —x;, —=x,y, =y, —y)+

Xy 1,

7 2 le]fdxfdy'x'(h —y)G(x; —x; = x,y, =y, —y)+

XUy AL

- Ly pl,ﬂfdxfdy(h ~X)YG(x, = x, =Xy, =y, =)+

Xy 4L
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x 7y i,)
m Shifting the indices results in a single convolution* l] EGZ i j-j P,

involving an integrated effective Green function:

© <> *plus possible boundary corrections involving single (not double) sums O Scionce




Ge'f consists of 4 terms: what are they?

m 1st term: Indefinite integral is function of (x;-x;,y;-y;)=(a,b)
evaluated at (a,b), (a-h,,b), (a,b-h), (a-h,,b-h,)
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No interaction cutoff at short distances

m Formulas looks like they have singularities, but result must be finite

m [n general, limiting form is needed in 4 cases:
® (X0, y;-y; =0),(x-x;—=hy, ¥y —=0),(Xi-%—0, y;-y; —h,).(x-x,—=h,, y;-y; —=h,)

m Example: (x-x;,—h,, y;-y; —=h,)
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Cost and Accuracy;
Improvement over Hockney Approach

m Cost: Computing the elemental integrals can be done via
analytical formulae or by numerial quadrature
® Requires more FLOPS than simply using G; but...

® when the grid is fixed, needs to be done once at the start of a run.
Amortized over many time steps, does not significantly impact run time.

® Note well: sensitivity to roundoff for large aspect ratios. Care required!

m Accuracy: Method works well as long as the elemental integrals

are computed accurately and as long as the grid and # of
macroparticles are sufficient to resolve variation in p

® maintains accuracy even for extreme aspect ratios (>1000:1)
As a result, new method performs orders of magnitude better

than the standard convolution algorithm for realistic problems
involving large aspect ratios




Example: Uniformly filled 2D ellipse

m Aspectratio is 1:1000
® X.,,=0.001,y.,,=1

m Calculation of fields using (1) standard Hockney algorithm
and (2) new approach

® In both cases, performed convolutions for the fields directly (rather than
calculating the potential and using finite differences to obtain fields)

m Calculation performed on a grid of size £0.0015 x + 1.5
using a mesh of size

® Hockney: 64x64, 64x128, 64x256,..., 64x16384
® New approach: 64x64




1:1000 test case; Ex vs. x:
Standard Hockney Algorithm has huge errors
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Ex vs. X : Reduced Vertical Scale
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Old algorithm has large errors until grid size reaches ~ 64x8192.
New algorithm has excellent accuracy on a grid as small as 64x64
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Comparisons with other methods

m Comparison with the finite element method:
® New method uses basis functions, but there is no variational quantity
to be numerically minimized and no linear system to be solved
= This is done analytically

m Comparison with the finite difference method:
® FD approximates: (1) continuous operators by stencils on grids, and

(2) sources by values at grid points

= Errorin (1) depends on behavior of the solution, ¢, compared with the FD
approximation to V2

® Error in new approach is source-limited, i.e. it only depends on the
deviation of the source, p, from the assumed functional form

= No issue with anisotropy except indirectly through the representation of p




Comment on Direct Convolution Methods

m Would not be generally useful except for the key fact that
a discrete convolution can be turned into a cyclic
convolution through zero padding and periodization of G

® Turns N? method into N log N at the price of grid doubling®
® Works when G=G(x-x’)
® Also works when G=G(x+x’)




Future Directions

m Extension to 3D straightforward but messy
® Formulas have been generated using a symbolic math program
® Implementation underway

B Question: Can this general approach (i.e. using full analytical
knowledge of G) be used in other simple geometries?

@ Can do Dirichlet in a box (write G as sum of convolutions/correlations)

® Long beams in pipes:

= Analytic approach to integratioin is crucial since G and p may vary on vastly different
scales

= potential performance increase by making use of shielding (exponential falloff) in the
long direction to discard terms beyond a certain distance from the source

r




Extension to Beams in Pipes

m CAC provides a crucial advantage, since the Green function falls off
exponentially in z, though p(z)may change slowly over meters

m Due to shielding, sum can be truncated in the “long” direction:
Nx ji jcutoﬁ

— eff
¢l,] - E E Gi—i',j— jv l.',j'
J=1

i'=1
m Forlong beam in a conducting pipe, if grid length in z is >> pipe radius,
can truncate at nearest neighbors:

eff
l] E(Gl i, j— lpi',j—1+Gl i, jlroi,j +Gl 3 ]+110i',j+1)

m For arectangular pipe, can rewrite Green function as a sum of
convolutions and correlations; then can still use FFT-based approach
to sum over elements
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